

https://prabi.ibcp.fr

rabi-la

Prediction of High Energy Molecules properties using Recursive Molecular Search (R.Mo.S)

S.Aguero¹, G. Jacob², <u>R. Terreux¹</u>

- EC-Mo Team / Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI) UMR 5305 CNRS Université Lyon 1. Institut de Biologie et Chimie des Protéines (IBCP), 7 passage du Vercors, 69367 Lyon – France.
- 2) Centre de Recherches du Bouchet (Ariane Group), 9 Rue Lavoisier, 91710 Vert le Petit France.

AVT-340 Research Workshop on "Preparation and Characterization of Energetic Materials"

11 February 2021

locument and the information therein are the property of C.N.R.S, They must not be copied or communicated to a third party without the prior written authorization of C.N.R.S

Introduction

- Focus on the improvement of explosives performance
- Take into account toxicological and environmental concerns

Reduction of environmental and health hazard

Major consideration

Project Toolbox

In collaboration with Ariane Group (AGS) Since 2012

<u>Project Toolbox:</u> Build optimized tools for predicting the properties of High Energy Molecules (HEM)

- Toxicology
- Physico-chemical properties
- Generators of molecules under constraints
- .

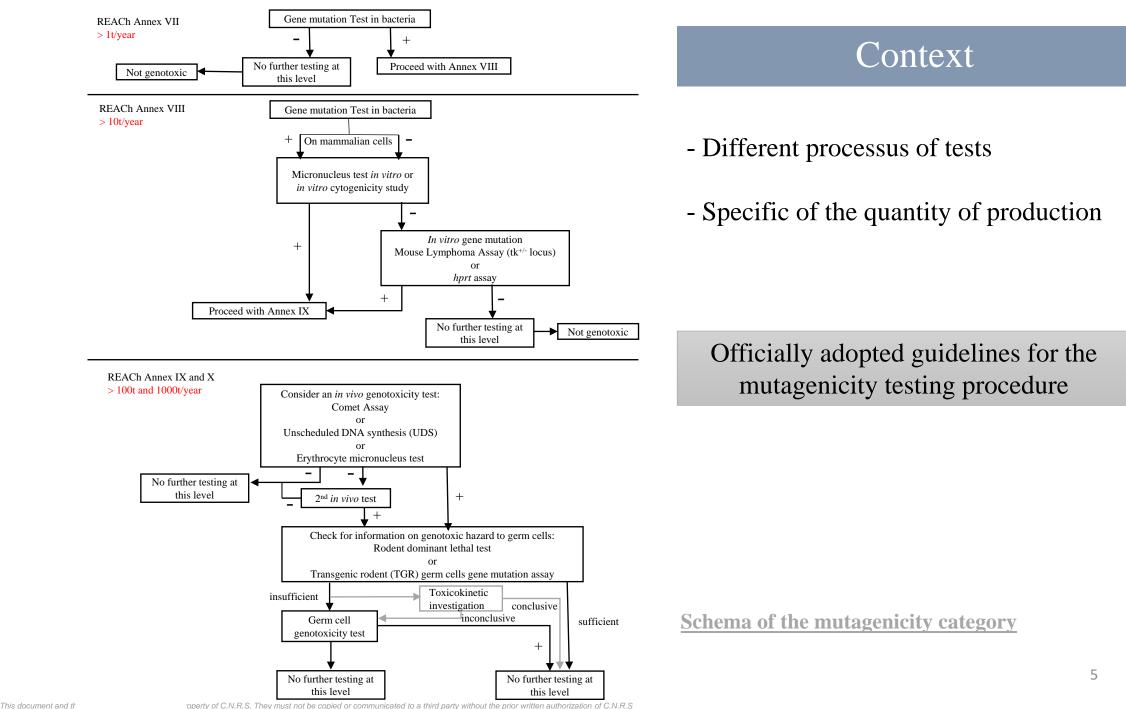
Toxicological Context

- Regulatory requirement = REACh

(Registration, Evaluation, Authorization and Restriction of Chemicals)

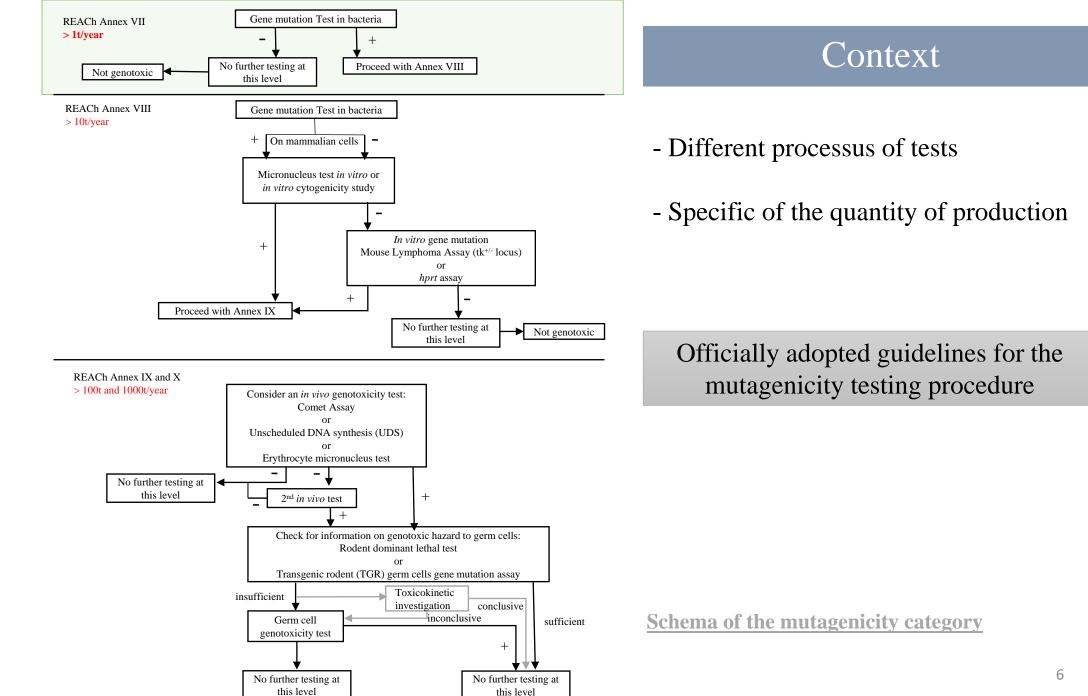
- Large number of *in vitro* tests commonly used
- Set up by REACh and the OECD
 (Organization for the Economic Cooperation and Development)

a variety of harmonized approaches


- Only 10 categories of toxicity tests are routinely/regulatory used

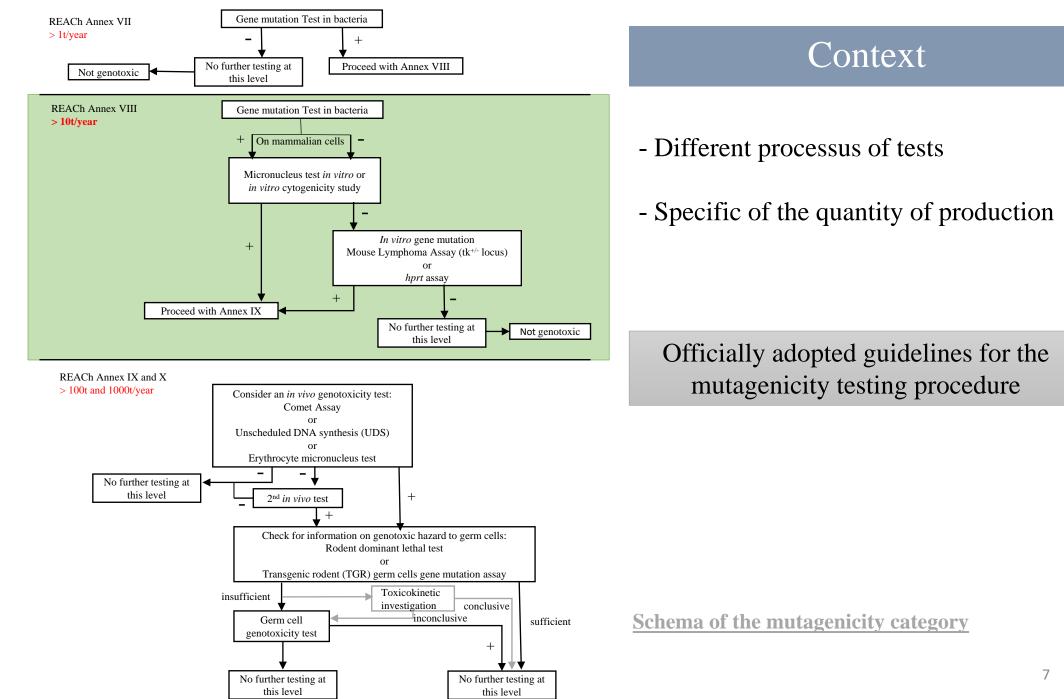
mutagenicity

described by REACh annexes from VI to XI


https://prabi.ibcp.fr

De recore - Aloc de Brondmanne, - Lon de record

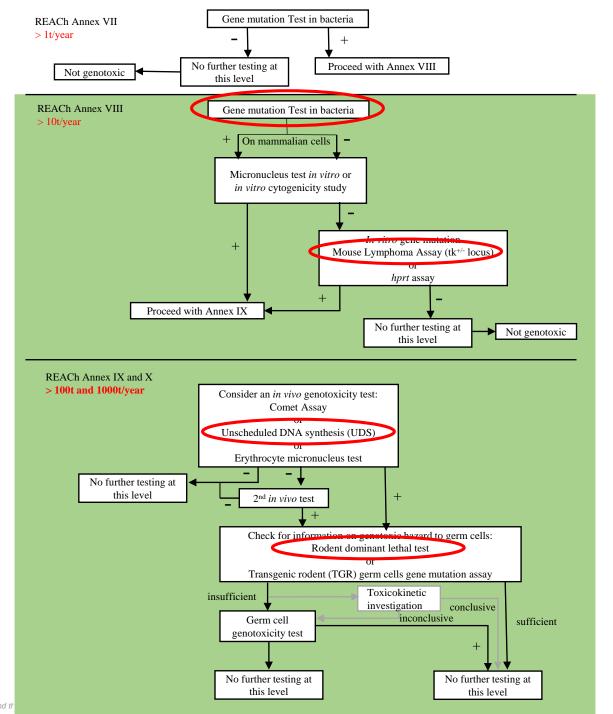
https://prabi.ibcp.fr Aprebi-la


(Up) Lyon 1

https://prabi.ibcp.fr Aprebi-la

Upon 1 This document and th

operty of C.N.R.S, They must not be copied or communicated to a third party without the prior written authorization of C.N.R.S


This document and th

https://prabi.ibcp.fr

Apredbi-lg.

(Up) Lyon 1

operty of C.N.R.S, They must not be copied or communicated to a third party without the prior written authorization of C.N.R.S

Context

- Different processus of tests
- Specific of the quantity of production

Officially adopted guidelines for the mutagenicity testing procedure

Schema of the mutagenicity category

https://prabi.ibcp.fr

Apredbi-lg.

(Up) Lyon 1

Quantitative Structure Activity Relationship (QSAR)

- Quantitative Structure Activity Relationship setup a mathematical equation to link the structure of a set of molecules to their activity / property.
- With molecules set which the property has been evaluated experimentally, train your QSAR:

$$Activity = \sum_{1}^{i} k_{i}.Descriptor_{i}$$

Descriptors : functions who answer a finite number using the molecule structure . i.e number of nitrogen Atom.

Problem: Lack of experimental data for HEM molecules

Selection of 5 European harmonised databases:

- EURL-ECVAM (European Union Reference Laboratory-European Commission for Alternatives to Animal Testing)
- JRC (Joint Research Center) QSAR Model database
- Carcinogenicity Genotoxicity eXperience (CGX)
- Carcinogenic Potency DataBase (CPDB)
- ISSTOX (Instituto Superiore di Sanità TOXicity databases)

One program: NTP (National Toxicity Program)

Obtain data for a large number of molecules

https://prabi.ibcp.fr

Aprébi-la

Table of available test

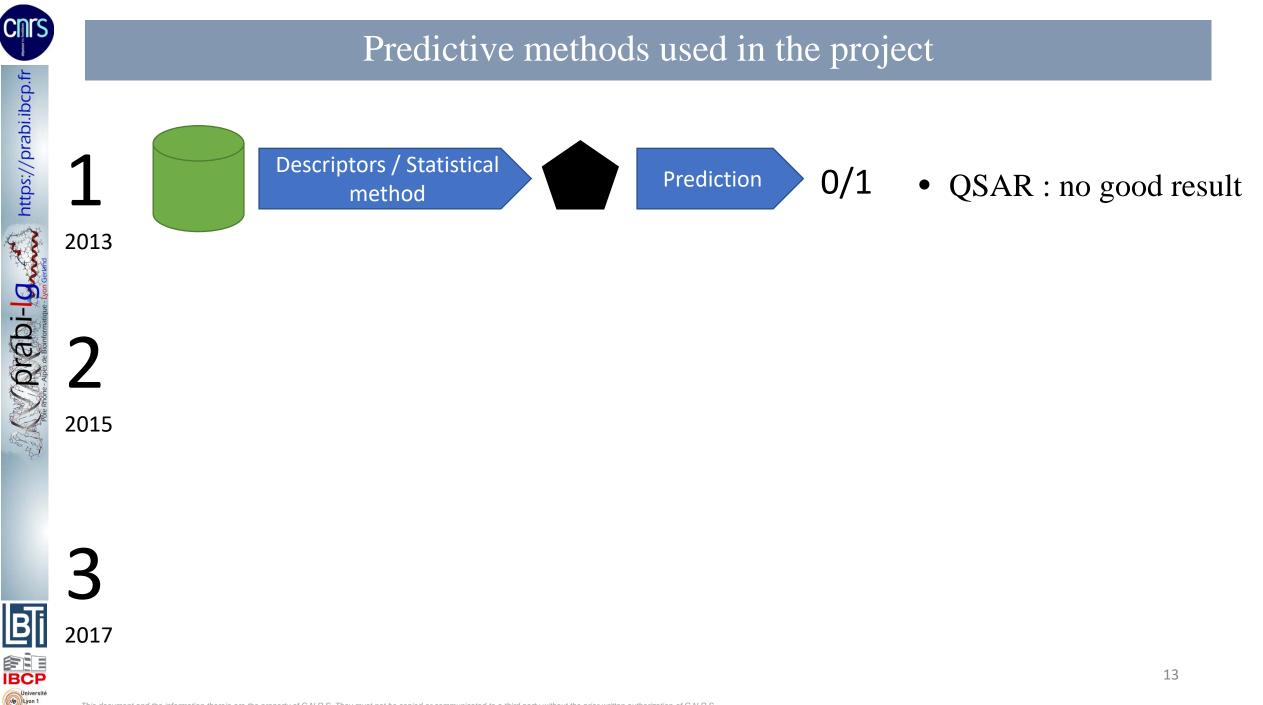
> Mutagenicity :

Number of molecules in Db (R.Mo.S)

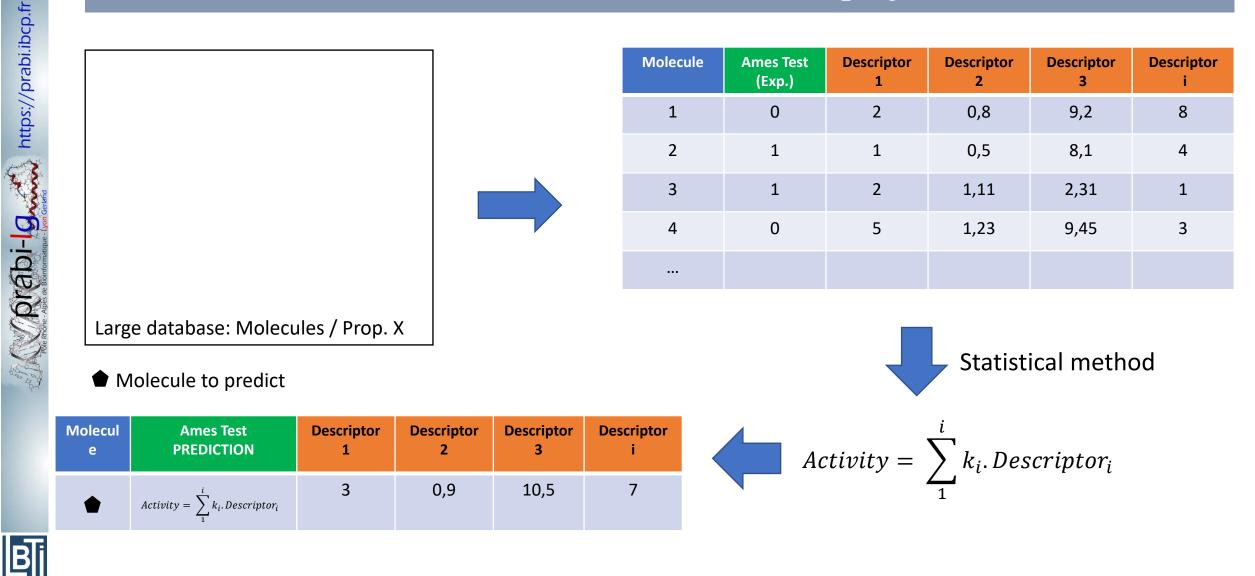
	(V1.0)	(V2.0)
Ames test	7.723	9.856
 Chromosomal Aberration (CA) test 	1.250	in progress
 Mouse Lymphoma Assay (MLA) 	1.468	in progress
 Unscheduled DNA Synthesis test (UDS) 	650	in progress
 Dominant Lethal Test (DLT) 	70	in progress
Carcinogenicity	1.801	in progress
Reprotoxicity	379	in progress

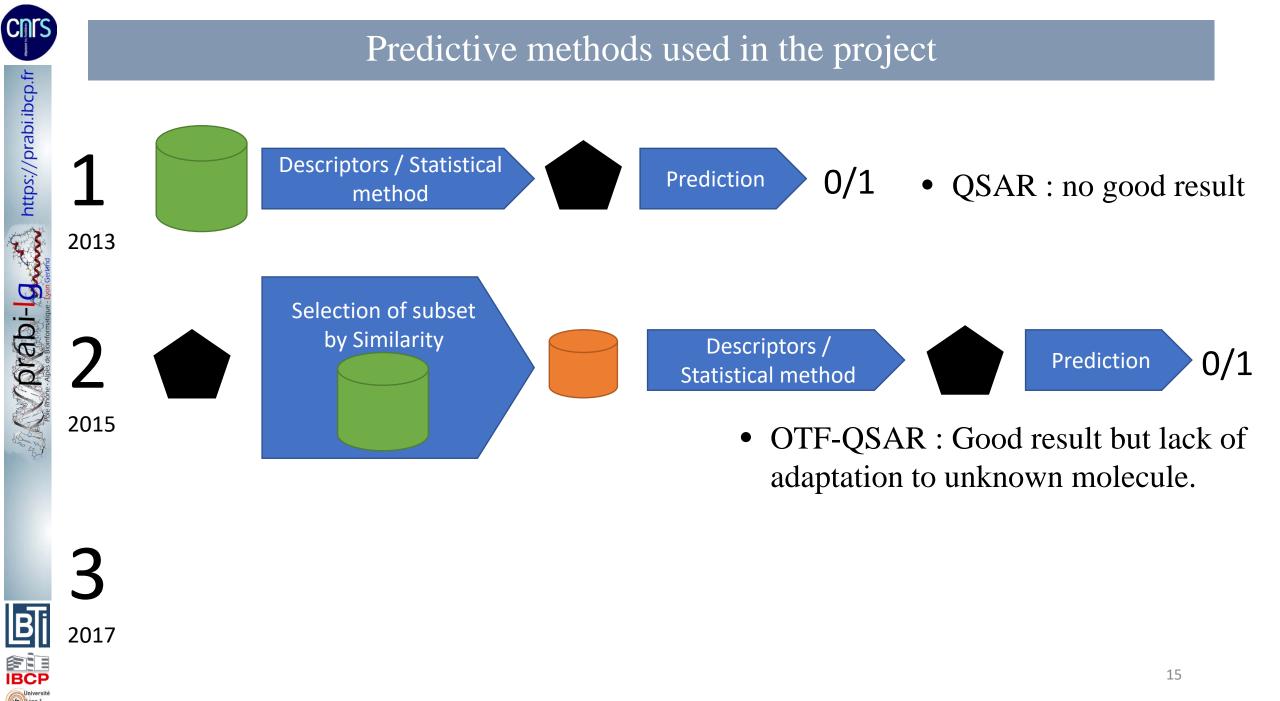
 \rightarrow

-


Quantitative Structure Activity Relationship (QSAR)

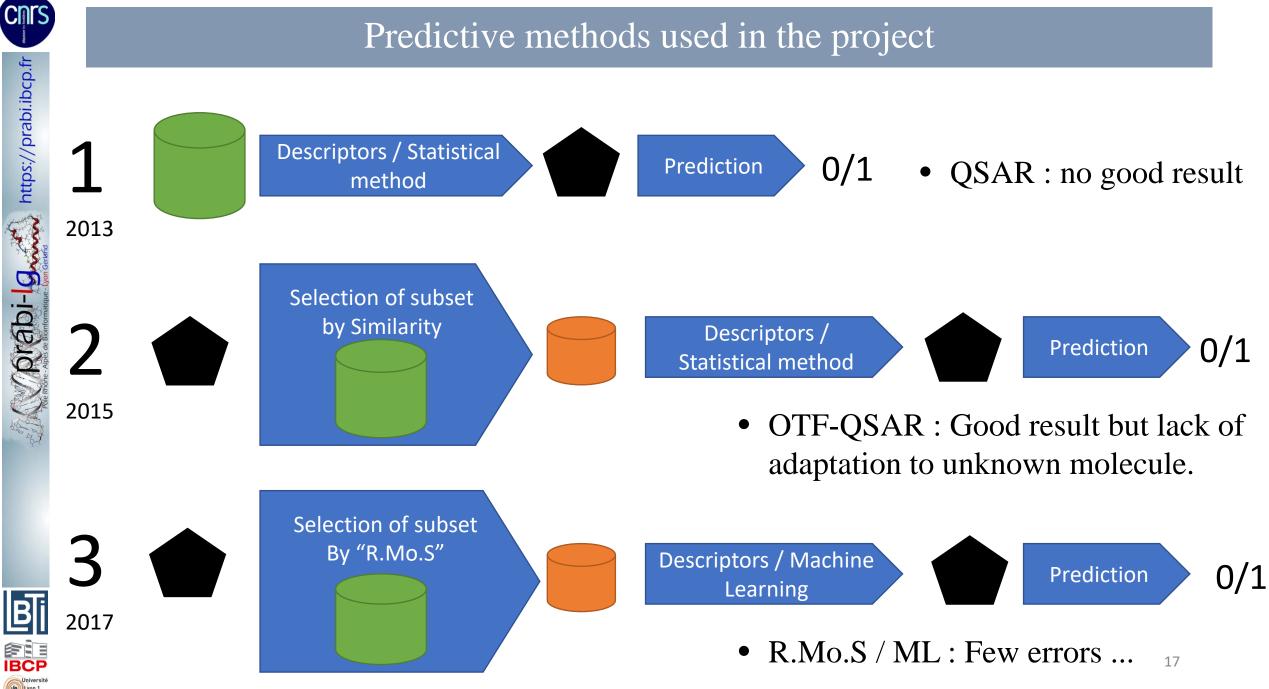
- Quantitative Structure Activity Relationship allow to determine a mathematical equation to link the structure of molecule to its activity (properties).
- On molecules set which the property has been evaluated experimentally, train your QSAR:


Activity =
$$\sum_{1}^{l} k_{i}$$
. Descriptor_i


- Descriptors : function who answer a finite number using the molecule structure . i.e number of nitrogen Atom.
- Starting this research program with commercial software \rightarrow 45 % Errors !!!
- <u>QSAR assumption</u>:
 <u>Molecules of the training set should be similar to m</u>
 - The predicted property must have one biological / physical mechanism

There are million's of toxic mechanisms for a cell.

Predictive methods used in the project



Predictive methods used in the project

				64					
				S1	0	2	0,8	9,2	8
				S2	1	1	0,5	8,1	4
				S3	1	2	1,11	2,31	1
				S4	0	5	1,23	9,45	3
		<					Statisti	ical metho	od
cule Ames Test PREDICTION	Descriptor 1	Descriptor 2	Descriptor 3	Descriptor i		ctivity =	$\sum^{i} k_{i}$. Des	criptor _i	
$Activity = \sum_{1}^{i} k_{i}.Descriptor_{i}$	3	0,9	10,5	7			1		
	Molecule to predict	Molecule to predict Ile Ames Test PREDICTION 1	Ames Test PREDICTIONDescriptor 1Descriptor 2	Molecule to predict Ule Ames Test Descriptor 1 Descriptor 3 Ames Test 0 Descriptor 1 1 0 9 1 0 5 1 0 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5	Arge database: Molecules / Prop. X Molecule to predict Ale Ames Test Descriptor 1 Descriptor 3 Descriptor i	Arge database: Molecules / Prop. X Molecule to predict Ale Ames Test Descriptor 1 Descriptor 2 Descriptor i REDICTION 1 Descriptor 2 Action 10.5 7	arge database: Molecules / Prop. XMolecule to predictMolecule to predictMeAmes Test PREDICTIONDescriptor 1Descriptor 2Descriptor 3Descriptor iDescriptor iMeActivity = 105T	arge database: Molecules / Prop. XMolecule to predictMeAmes Test PREDICTIONDescriptor 1Descriptor 2Descriptor 3Descriptor iDescriptor iIAmes Test PREDICTIONDescriptor 1Descriptor 2Descriptor 3Descriptor iDescriptor i	Arrege database: Molecules / Prop. X Statistical method Molecule to predict Descriptor Descriptor Descriptor Descriptor Image: Activity = 1 Image: Activi

CINIS

https://prabi.ibcp.fr

This document and the information therein are the property of C.N.R.S, They must not be copied or communicated to a third party without the prior written authorization of C.N.R.S

Recursive Molecular Search algorithm (R.Mo.S)

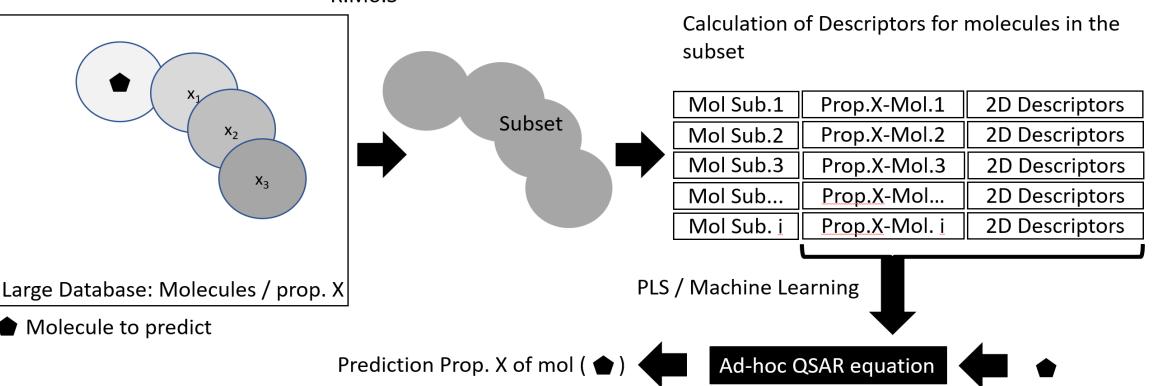
					Moleo	cule	Ames Test (Exp.)	Descriptor 1	Descriptor 2	Descriptor 3	Descriptor i	
					S1		0	2	0,8	9,2	8	
					S2		1	1	0,5	8,1	4	
					\$3	;	1	2	1,11	2,31	1	
					S4	Ļ	0	5	1,23	9,45	3	
Lard	a databasa: Malasi	los / Prop					Output		Input			
Large database: Molecules / Prop. X Molecule to predict Machine Learning												
Molecul e	Ames Test PREDICTION	Descriptor 1	Descriptor 2	Descriptor 3	Descriptor i							
۲	=> 0/1	3	0,9	10,5	7							

Prediction system

CINIS

https://prabi.ibcp.fr

Cordbi-lg


BĪ

IBCP

புத் Lyon 1

Recursive Molecular Search algorithm (R.Mo.S)

R.Mo.S

- The R.Mo.S algorithm will create a new training set of molecule far away from the unknown molecule.
- Set up a predictive system on unknown molecules
- R.Mo.S patent AG / CNRS / UCBL patent WO 2018 / 234718 extension 2020 : EU / USA
- Alliod et al., PEP 2017.

https://prabi.ibcp.fr

Aprabi-lg.

Recursive Molecular Search algorithm (R.Mo.S) Development

- Optimization of 2D descriptors for machine learning Algorithm.
 - Reduction of number of 2D descriptors and incorporation of MACCS

- Optimization of database and fill database with news data from literature.
 - Ames DB V1 7.723 molecule ⇒ 9.856 molecules.

Université Lyon 1

R.Mo.S Testing :	Pharmacology	Exp. Data	R.Mo.S / Machine Learning	ACD Percepta	
C		1-methylpyrène	+	- 87%	+
		1-methyl-4-nitrobenzene	+	- 70%	-
		1,2,3-benzotriazol	+	+ 60%	+
→Test Set		1,2-dichoroethane	+	+ 82%	+
		1,4-dithiane	-	D 55%	+
		1,4-oxanthiane	-	- 92%	-
		1,8-dinitronaphalene	+	+ 69%	+
 Molecules not in database 		2-aminopyridine	-	- 88%	-
		2-methylbenzamide	-	- 63%	-
		2-nitropropane	+	- 78%	+
		5-nitro-o-toluidine	+	+ 70%	+
Specialized Test set	Acetamide	-	- 68%	-	
1	Aniline	-	- 96%	-	
		Aspartame	-	- 100%	-
• Fillers	20 molecules	Benzothiazole	-	- 88%	-
	20 molecules	Benzyl chloride	+	+ 95%	
		Butanal oxime	+	+ 93%	+
54 4 4		CI Acid Orange 3	+	- 79%	+
Plasticizer	5 Molecules	CI Allura red 17	-	- 99%	-
		Caffeine	-	- 100%	- - +
		Caprylyl chloride	+	+ 97%	+
Oxidizer	6 Molecules	DEPH	-	- 76%	-
	0 WIDICCUICS	Dibenz[a,h] anthracene		+	
		Disobutylphtalate	-	- 84%	-
D1 1		Diisodecylphtalate	-	- 86%	-
Pharmacology	45 Molecules	Di-n-octyl phthalate	-	- 87%	-
Pharmacology		Estradiol	-	- 72%	-
		Ethylene glycol	-	- 90%	-
Pyrotechnics	9 Molecules	HNF	+	. C10/	D 50%
1 yroteennies) Molecules	Hydrazine hydrate	+	+ 61% - 64%	
		Hydrazine perchlorate	-	- 66%	_
		Isopropyl methylphosphonic acid p-chlorophenyl methyl sulfide	-	- 84%	-
		p-chlorophenyl methyl sulfone		- 81%	
		p-chlorophenyl methyl sulfoxide	-	- 92%	
		Phenylacetonitrile		- 74%	
		Yellow 74 pigment	-	- 93%	-
		Pitavastatin	-	- 93%	
i e nharmacalaav tee	Propionitrile	-	- 100%		
in pharmacology its	t set predicted by R.Mo.S and ACD percepta.	o-cresol	-	- 95%	_
		Stearic acid	_	- 95%	_
Errors are in Red		L-taurine	-	- 88%	_
		Theophylline	-	- 91%	-
This document and the information therein are the property of C.N.R.S, Th	Thiourea		- 96%	_	
The assument and the information therein are the property of C.N.R.S, Th	is y makened to copied or continuation to a mind party without the prior written authorization of C.N.N.O			5070	

070/

Prediction results comparison

54,3

	R.Mo.S	ACD percepta	
Ames test	72/85	64/85 (2 impossible)	
CA Test	71/85	49/85 (1 impossible)	
MLA Test	69/85	45/85	
UDS Test	67/85	57/85 (2 impossible)	
DLT Test	75/85	Not Available	
Carcinogenicity Test	79/85	69/85 (5 impossible)	
Reprotoxicity Test	75/85	39/85	
Number of good responses	508/595	323/595	
(%) of good responses	85,4	54,3	

- Excellent result ≈ 85 % good prediction (R.Mo.S V1)
- R.Mo.S V2 : 88 % (Ames Test)
- Best result than Gold standard (ACD Percepta, ACD Labs)
- DLT test not available for ACD.
- Real difference on reprotoxicity test.

https://prabi.ibcp.fr

prabi-lg.

Conclusion

- Best prediction on prediction for "R.Mo.S / Machine learning" approach.
- Prediction could be performed on HEM, liquid, salts, energetic or not molecules, pharmaceuticals...
- Around 85% of good prediction on different sets of molecules.
- "R.Mo.S" is patented since December 2018 by AG / CNRS / UCBL.

- "R.Mo.S / ML" software development :
 - Deployment on web service and commercial distribution is in progress.
 - Databases are improved and algorithm too... R.Mo.S Version 2 soon !

Université

Lyon 1

- In silico tox team
 - Pr. R. Terreux
 - Dr. JA Chemelle
 - S. Aguero
 - M. Fournier

- AG team (CRB)
 - J.F. Guery
 - G. Jacob
 - L. Blarasin

Acknowledgment

We are thankful to DGA for funding this project

